Japan – Lead Market for Age-Based Innovations?

German Institute for Japanese Studies (DIJ)
Tokyo, Japan
26 September 2013
Prof. Dr. Cornelius Herstatt

Questions for today’s presentation

1. How can companies turn the “Aging threat” into an opportunity to innovate?

2. Is Japan a lead market for age-based innovations? Why – why not?

3. How can Japanese companies benefit from this? Examples? Learnings?
The neglected challenge – the aging society

- Demographic change is a global phenomenon
 - Populations in many countries aging – Japan at the forefront
 - In parallel many populations shrink (vs. population growth)
- Demographic change is an economic challenge, but may be seen as an opportunity (Drucker, 2002; Kohlbacher & Herstatt, 2011; Magnus, 2009)
 - Shift in customer needs and expectations will lead to new products and services: Silver Business and Silver Products
 - New products, services will lead to growth and new business models, firms and new competition
- Aging can turn out to be a major source of innovation (Drucker, 1985)
What needs – and products – come along with age? Some examples

- Easy-to-use (household)
- Luxury
- Life-long learning
- Food
- Cars
- Housing/Sanitary equipment
- Care-Robots, Rehabilitation
- Drugs
- Computers, Software, Peripherels
- Travel, Insurance, Financials
- Visual support
- Hearing Devices

Nations across the globe are aging rapidly, Japan at the fore-front

<table>
<thead>
<tr>
<th>Years</th>
<th>Japan</th>
<th>Germany</th>
<th>UK</th>
<th>Russia</th>
<th>USA</th>
<th>China</th>
<th>Brazil</th>
<th>World</th>
<th>India</th>
<th>Kenya</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>34</td>
<td>35</td>
<td>37</td>
<td>35</td>
<td>33</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>1960</td>
<td>35</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>37</td>
<td>40</td>
<td>33</td>
<td>33</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>1970</td>
<td>33</td>
<td>37</td>
<td>37</td>
<td>38</td>
<td>41</td>
<td>44</td>
<td>32</td>
<td>32</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>1980</td>
<td>34</td>
<td>38</td>
<td>40</td>
<td>40</td>
<td>44</td>
<td>45</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1990</td>
<td>32</td>
<td>37</td>
<td>41</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>2000</td>
<td>30</td>
<td>37</td>
<td>41</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>2010</td>
<td>29</td>
<td>37</td>
<td>40</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>2020</td>
<td>28</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>29</td>
</tr>
</tbody>
</table>

Contents

- Population Aging and Innovations
- The Role of Lead Markets
- Case Studies
- Observations and Conclusions

Lead market is the market of the first, broad application of a new design. Such designs supersede competing designs in lag markets and become widely dominant.

Typical lead market diffusion pattern

- Example: Telefax-Technology in the 1980ies; Japan was the lead market, although the technology had been originally developed in Germany
- For innovations, success in the lead market is often followed by international success in so-called lag markets
- Lead market designs can displace other, alternative designs
- Thus, knowing your lead market is important for innovating companies!
What determines a Lead Market?

- Concept pioneered by Marian Beise, currently at Ritsumeikan Asia Pacific University
- Lead market have been proven relevant for a number of important products and industries (ICT, Automotive, etc).
- Factors focus on demand conditions
- Factors depend on socio-political, ecological, and cultural system of a country

SOURCE: Beise 2001

Question: Does have Japan the potential to become a lead market for age-based products?

- How „promising“ are the various factors in the Case of Japan with regard to age-based innovations?
Japan’s population will continue to age faster than world average

Median age forecast – Japan, Germany, world average

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2015*</th>
<th>2020*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>44.7</td>
<td>46.4</td>
<td>48.2</td>
</tr>
<tr>
<td>Germany</td>
<td>44.3</td>
<td>46.5</td>
<td>47.7</td>
</tr>
<tr>
<td>World average</td>
<td>29.2</td>
<td>30.4</td>
<td>31.6</td>
</tr>
</tbody>
</table>

* Forecasted value

Resulting in the highest population share aged 65 years and older - market of “aged” will be huge

Population share 65+ years of age, 2010

<table>
<thead>
<tr>
<th>Country</th>
<th>Percent</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>20.3</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>World average (7.7)</td>
<td></td>
<td>2.2% points ahead of first follower</td>
</tr>
</tbody>
</table>

SOURCE: UN DESA World Population Prospects, 2010 Revision
Japanese pensions are among the highest in the world...

Pensions in OECD countries that are most affected by population aging
USD, PPP

<table>
<thead>
<tr>
<th>Country</th>
<th>Price/Cost Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netherlands</td>
<td>26,538</td>
</tr>
<tr>
<td>Austria</td>
<td>26,088</td>
</tr>
<tr>
<td>Switzerland</td>
<td>24,185</td>
</tr>
<tr>
<td>Japan</td>
<td>22,425</td>
</tr>
<tr>
<td>Germany</td>
<td>22,395</td>
</tr>
<tr>
<td>Italy</td>
<td>16,687</td>
</tr>
<tr>
<td>Greece</td>
<td>15,626</td>
</tr>
<tr>
<td>Spain</td>
<td>15,505</td>
</tr>
<tr>
<td>Portugal</td>
<td>12,507</td>
</tr>
<tr>
<td>OECD 30 average (18,271)</td>
<td></td>
</tr>
</tbody>
</table>

...on the other side there is a major gap to work income, but this might be compensated by sheer volume

Gross pension replacement rates by earnings, median earner
Percent

<table>
<thead>
<tr>
<th>Country</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iceland</td>
<td>109</td>
</tr>
<tr>
<td>Greece</td>
<td>96</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>90</td>
</tr>
<tr>
<td>Netherlands</td>
<td>89</td>
</tr>
<tr>
<td>Israel</td>
<td>85</td>
</tr>
<tr>
<td>USA</td>
<td>100</td>
</tr>
<tr>
<td>Germany</td>
<td>100</td>
</tr>
<tr>
<td>UK</td>
<td>100</td>
</tr>
<tr>
<td>Japan</td>
<td>100</td>
</tr>
<tr>
<td>Ireland</td>
<td>35</td>
</tr>
</tbody>
</table>

* recent crisis-related adjustments not accounted for

SOURCE: OECD Pension Models, 2011
Japan is 4th largest exporter in the world – by that it has access to many potential lag markets in the world.

List of countries by merchandise exports 2012

<table>
<thead>
<tr>
<th>Country</th>
<th>USD billions</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>2,057</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>1,564</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>1,460</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>774</td>
<td>4.2</td>
</tr>
<tr>
<td>France</td>
<td>567</td>
<td>4.9</td>
</tr>
<tr>
<td>South Korea</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>Rest of world</td>
<td>9,262</td>
<td>51</td>
</tr>
<tr>
<td>Total</td>
<td>18,259</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: The CIA World Fact Book 2012

Looking at all factors Japan seems a very promising candidate as lead market for age-based innovations

Lead market factors
- Price and cost advantage
 - Large market size
 - Fast market growth
- Demand advantage
 - High income
 - Early exposure to needs that other countries will experience later
- Transfer advantage
 - Close international ties
 - Sophisticated and critical customers
- Export advantage
 - Sensitivity to international problems and needs
 - Strong export orientation
- Market structure advantage
 - Strong competition within industries
 - High founding intensity (Start-ups)
Contents

- Population Aging and Innovations
- The Role of Lead Markets
- Case Studies
 - Mental Commitment: Paro Robot Seal
 - Mobility/Rehab: Cyberdyne HAL Suit
 - Telecom: Raku-Raku Phone
 - Eating Aid: My Spoon
- Observations and Conclusions

Contents

- Population Aging and Innovations
- The Role of Lead Markets
- Case Studies
 - Mental Commitment: Paro Robot Seal
 - Mobility/Rehab: Cyberdyne HAL Suit
 - Telecom: Raku-Raku Phone
 - Eating Aid: My Spoon
- Observations and Conclusions
Mental Commitment: Paro Robot Seal

- Paro robot seal interacts with users, reduces stress, stimulates interaction between users and caregivers, and increases relaxation (source: AIST)
- Developed over 12 years by the National Institute of Advanced Industrial Science and Technology (AIST) of Japan, commercialized in 2005
- USD 15 million development cost financed through public funding
- Lead market factors Japan:
 - **Demand advantage**: early exposure of Japanese market to effects of demographic change and population aging
 - **Transfer advantage**: Japan known for innovation in robotics
- Major purchase by Danish care institutions marked market entry in Europe

Paro Robot Seal – Timeline

- 2005: Paro interactive therapeutic seal robot released for sale in Japan
- 2008: Paro sales launched in Denmark. In the same year, the Danish Technological Institute launches a national effort together with care centers and local councils to
 - Assess the effects of Paro
 - Professionalize the use of robots in welfare contexts
 - Train personnel for their use
- 2009: Paro certified as medical device by US Food and Drug Administration and sales in the US launched
- 2010: By November about 1,800 Paro units sold around the world, over 20% of which to medical and welfare institutions. Paro sales launched in
 - Germany
 - the Netherlands
 - Norway
Paro – diffusion in Japan and selected export markets

<table>
<thead>
<tr>
<th>Country</th>
<th>Launch of sales</th>
<th>2005</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2010</th>
<th>2010</th>
<th>n/a</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>2005</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>2008</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>2009</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>2010</td>
<td>40-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>2010</td>
<td>~10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>2010</td>
<td>~10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>n/a</td>
<td>~10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>n/a</td>
<td>~10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

92% sales gap to leading export market

1 As of November 2010

SOURCE: Levsen based on Institute for International Studies and Training, 2010

Contents

- Population Aging and Innovations
- The Role of Lead Markets
- Case Studies
 - Mental Commitment: Paro Robot Seal
 - Mobility/Rehab: Cyberdyne HAL Suit
 - Telecom: Raku-Raku Phone
 - Eating Aid: My Spoon
- Observations and Conclusions
Mobility/Rehab: Cyberdyne HAL Suit

- Cyberdyne hybrid assistive limb (HAL) suit supports impaired users in standing and walking.
- Developed in Japan under leadership of Prof. Sankai of Tsukuba University; marketed through private company Cyberdyne Inc. since 2009.
- Lead market factors Japan:
 - Demand advantage: Sophistication and experience of robot customers in Japan.
 - Transfer advantage: Japan known for innovation in robotics.
- Close cooperation with German partners has resulted in completion of safety certification in Europe – lead market advantage Europe due to more rapid certification.

HAL Suit – Timeline

- 1989: Prof. Sankai of Tsukuba University, Japan initiated HAL development.
- 1997: First HAL prototype completed.
- Early 2000s: Several prototypes completed.
- 2008: HAL rented out to a number of hospitals.
- By October 2012: Over 300 HALs used in hospitals and nursing homes across Japan.
- February 2013: Global safety certificate issued.
- August 2013: Certified with “European Conformity” (EC) as world’s first robotic device for medical treatment.
HAL Suit – International co-operation for accelerated market roll-out

- Close co-operation of Cyberdyne with German hospital Bergmannsheil in city of Bochum and other German stakeholders
 - 2010: Setup of Cyberdyne Germany
 - 2012: 3 HALs delivered to Bergmannsheil and redesign of old hospital building to HAL patient treatment facility
- Certification as medical device in accordance with European Medical Device Directive (MDD) in August 2013 (CE mark)
- Setup of Cyberdyne Care Robotics in Germany in August 2013
 - Manage Bochum patient facility
 - Roll-out HAL suit in German-speaking market (Germany, Austria, Switzerland)

CE certification in accordance with MDD allows large-scale market roll-out of HAL

HAL Suit – Europe at regulation advantage?

- Developed and initially evaluated in Japan
- Medical device certification in Japan still pending – only use as “welfare device”
- Medical device certification attained in Europe in August 2013, shown by CE mark (CE)

- Certification as medical device is major hurdle for bringing HAL suit to markets around the world – first trials conducted under provisional safety permit
- Medical device certification in most countries decisive for insurance coverage
- Certification process in Japan extremely difficult – certification process in Europe faster
- Countries that complete certification first have important adoption advantage and have higher chances to become lead market

Is Japanese regulation too strict to implement assistive robot innovations?
Contents

- Population Aging and Innovations
- The Role of Lead Markets
- Case Studies
 - Mental Commitment: Paro Robot Seal
 - Mobility/Rehab: Cyberdyne HAL Suit
 - Telecom: Raku-Raku Phone
 - Eating Aid: My Spoon
- Observations and Conclusions

Telegram: Raku-Raku Phone

- Simplified mobile phone based on the principle of universal design – “a phone that can be used by anybody”
- Raku means “easy-to-use”
- Two innovation efforts:
 - First model by Panasonic upon request of NTT DoCoMo (1999)
 - From model II on development and production by Fujitsu (2001)
- Development of Raku-Raku phone driven by collaboration with NTT DoCoMo
- Lead market advantage Japan:
 - Demand advantage: NTT DoCoMo as major and sophisticated customer
 - Price and cost advantage: scale of Japanese market regarding mobile phones for elderly

SOURCE: Kohlbacher
Raku-Raku Phone – Timeline (1999-2009)

- Rapid release of Raku-Raku phone models
- 20 million Raku-Raku phones sold in Japan between 2001 and 2013

Raku-Raku Phone – Timeline (most recent)

- 2012: smart phone version introduced
- June 2013: first foreign market entry in France with Raku-Raku smart phone
- August 2013: Raku-Raku smart phone 2 introduced in Japan
Contents

- Population Aging and Innovations
- The Role of Lead Markets
- Case Studies
 - Mental Commitment: Paro Robot Seal
 - Mobility/Rehab: Cyberdyne HAL Suit
 - Telecom: Raku-Raku Phone
 - Eating Aid: My Spoon
- Observations and Conclusions

Eating Aid: My Spoon

- Eating aid robot to address
 - Chewing and swallowing problems,
 - Motor control problems,
 - Sitting posture problems,
 - Vision and cognitive issues
- Developed over 10 years by Secom Co. of Japan, funded by the Association of Technical Aids
- Currently available in Japan (Secom) and Europe (FOCAL Meditech)
- Lead market factors unclear at this time – very Japan-specific innovation design
 - Compatibility requirement with Japanese-style steep edge of plate
 - Different power unit required for European model (both voltage and power use)
My Spoon – Timeline

• 1992: first discussed at 7th RESJA Annual Conference – “Meal assistance robot as a device for people with quadriplegia” (S. Ishii, F. Hiramatsu, S. Tanaka and Y. Amari)
• Continuous technical improvement
• 2003: most recent listed scientific publications
 – “Case study of the meal assistance robot”
 – “Clinical application of the meal assistance robot”
 – “The Development of Meal-Assistance Robot ‘My Spoon’”
• Product adoption remains a challenge:

“(…) sales of a Secom product, My Spoon, a robot with a swiveling, spoon-fitted arm that helps older or disabled people eat, have similarly stalled as caregivers balk at its $4,000 price.

Contents

• Population Aging and Innovations
• The Role of Lead Markets
• Case Studies
• Observations and Conclusions
Conclusion

- There is a need and a growing market for age-based innovations – universal design does not address all age-associated challenges and there is plenty of room for age-dedicated products/services.
- Lead markets and lag markets do exist – some countries adopt age-based innovations more readily than others.
- Japan offers good conditions to become a lead market in age-based innovations (many still untapped fields).
- However, in order to capture this potential, Japanese age-based innovations need to also consider needs, preferences, and other external conditions in foreign markets – making products and services more “exportable”.
- With regard to products that need to go through extensive approval and accreditation, Japan should collaborate internationally in order to get products into the market and build up a certain level of pressure on the domestic approval agencies (WTO-approvals, ECE).

Japan has missed a number of attractive product opportunities: Example Indoor Mobility: Stair Lifts

- Originally developed in 1923 by C.C. Crispin in the USA for a sick friend who could not use stairs.
- Between 1923 and 1962 only available in the US market.
- Lead market factors USA:
 - Demand advantage: stair lift industry in early years almost exclusively serving wealthy homeowners.
 - Transfer advantage: stair lift internationally popularized with American Hollywood movies between the 1940s and 1960s.
- Spread of 1962 “Inclinette” design to international markets (lead market design).
- International transfer of innovation via traveling businessman, grandson of largest Dutch elevator maker.
Japan has missed a number of attractive product opportunities: Example Rollator Walkers

- Developed in 1978 by polio sufferer Aina Wifalk in Sweden for her own use
- Quickly adopted in Sweden, but more than a decade of delay before adoption in other European countries
- Lead market factors Sweden:
 - Price and cost advantage: quick creation of economies of scale due to (1) large purchasing volume and (2) centralized purchasing process of Swedish social security systems
- Continued leadership in rollator design in Central Scandinavia (Sweden, Norway)
- Rapid spread to other European markets – especially Germany – since early 1990s
- Today still substantial country-specific differences in market penetration

Rollators – diffusion in lead market and selected lag market

Annual rollator sales
Units sold per 100,000 inhabitants

1 = values Germany interpolated
Japan has missed a number of attractive product opportunities. Example: Reverse Mortgages:

- "A reverse mortgage enables older homeowners (62+) to borrow against the equity in their homes without having to sell the home, give up title, or take on a new monthly mortgage payment" (NRLMA)
- First developed and adopted in the United Kingdom
- Lead market factors UK:
 - Demand advantage: customers with advanced knowledge or financial and mortgage products
 - Transfer advantage: UK known for innovation in financial services
- USA – although originally lag market – have played exceptional role in RMs, e.g. through early regulation that facilitated market growth (regulatory advantage)

Reverse mortgages – diffusion in lead market and selected lag market

Annual reverse mortgage production
Contracts signed per 1 million inhabitants

SOURCE: Levensen based on SHP Equity Release 2011, NRLMA 2012, Maddison 2010
“Cultural distance” as a major hurdle to benefit from lead market advantages? Not sufficient to explain!

Country comparison of cultural parameters: Japan, Germany, United States
non-dimensional

- Japan culturally strongly divergent from other advanced economies
- Japanese innovations may be perceived in a different cultural context abroad
- Role of elderly in a society closely linked to domestic cultural values
- International diffusion of Japanese innovations with strong link to Japanese culture may be difficult

Hofstede 5D model of national culture:
- Power Distance (PDI)
- Individualism versus Collectivism (IDV)
- Masculinity versus Femininity (MAS)
- Uncertainty Avoidance (UAI)

Management implications for globally successful innovations (1/2)

Price/cost advantage
- How robust is the value proposition of our innovation in countries with different cost structures (e.g. different level of labor costs for elderly care)?
- Is our innovation viable in smaller markets than Japan with lower economies of scale?

Demand advantage
- Does our innovation changes in the environment (trends) that will not only affect Japan but also other countries?
- At what time will these trends affect other countries?
- Are there already potentially competing local solutions in other countries?

Transfer advantage
- Is Japan perceived as the global leader in an innovation category?
- Are Japanese innovation designs perceived as very Japan-specific or do they incorporate needs and preferences from other countries? Specific market research is needed!
Management considerations for globally successful innovations (2/2)

- Is there strong export orientation of our company?
- How well do we know our export markets? Do we understand the end customers' needs there?
- Do we have an organizational setup facilitating to implement innovations abroad? Do we have resources in leading country markets for our innovation like local application engineering?
- Are our age-based innovations well-positioned within our company structure? Would a spin-off, FDI in target markets, or an innovation strategy based on M&A have advantages?
- Are we sure that we are tracking competitors in the most innovative and dynamic markets?
Stair Lifts – Timeline

- 1923: developed and patented by C.C. Crispen, Pennsylvania, USA
- 1924: establishment of stair lift company “INCLINATOR Company of America”, 1 stair lift sold
- 1925: 6 inclinators sold
- 1928: first model for winding stairs developed
- 1947: first US competitor enters market
- 1940s to 1960s: Oscar-winning and nominated movies feature stair lifts, making the product internationally known
- 1960: owners’ grandson of largest Dutch elevator maker “Jan Hamer en co” travels to the US and witnesses stair lifts
- 1962: first non-US stair lift available by Jan Hamer and Co – model directly based on US stair lift design
- 1960s/1970s: stair lifts introduced in all European markets, new companies founded

Contents

- Population Aging and Innovations
- The Role of Lead Markets
- Case Studies
 - Mental Commitment: Paro Robot Seal
 - Mobility/Rehab: Cyberdyne HAL Suit
 - Telecom: Raku-Raku Phone
 - Eating Aid: My Spoon
 - Indoor Mobility: Stair Lifts
 - Outdoor Mobility: Rollator Walkers
 - Financial Services: Reverse Mortgages
- Observations and Conclusions
Rollators - Timeline

- 1978: developed as a user innovation by Swedish polio sufferer Aina Wifalk
- 1988: Swedish rollator sales above 30,000 units
- 1990: first availability of rollators in largest European market Germany
- 1993: Swedish sales exceed 40,000 units
- 1996: first import of 1,600 units into the US
- 1998: Queen Ingrid of Denmark uses a loaned rollator for first time in public, becoming “a powerful image that encouraged others not to be ashamed of their rollators”
- 2000: US sales at 20,000-40,000 units
- 2000: three main Swedish makers produce 150-175,000 units annually, exporting >50%
- 2005: German insurance-covered rollator sales are at ~500,000 units per year
- 2012: approximately 2 million rollators in use in Germany, making it the biggest country market worldwide

Contents

- Population Aging and Innovations
- The Role of Lead Markets
- Case Studies
 - Mental Commitment: Paro Robot Seal
 - Mobility/Rehab: Cyberdyne HAL Suit
 - Telecom: Raku-Raku Phone
 - Eating Aid: My Spoon
 - Indoor Mobility: Stair Lifts
 - Outdoor Mobility: Rollator Walkers
 - Financial Services: Reverse Mortgages
- Observations and Conclusions
Reverse Mortgages – Timeline

- 1930: UK-based Home & Capital Trust Ltd. Develops "home equity reversions", a precursor to reverse mortgages
- 1961: first RM in the United States by Nelson Haynes of Deering Savings & Loan: the mortgage recipient is Nellie Young, the widow of Mr. Haynes's high school football coach
- 1965: Home Reversion offers the first reversion income scheme in the UK
- 1981: – Incorporation of non-profit National Center for Home Equity Conversion (NCHEC) in Madison, WI, US
 - Initial exposure of reverse mortgages through nationwide media in the US (Newsweek, Time, U.S. News, Good Morning America)
 - Musashino municipality near Tokyo launches first Japanese RM pilot
- Since 1984: several bills passed by U.S. Congress to promote RMs (e.g. mandating federal insurance, tax treatment of RMs, consumer protections)
- 2000: UK annual volume of signed RMs exceeds 10,000 contracts for the first time – two years before reaching 10,000 contracts in the US market
- 2006: market peak of RMs in the UK (~30,000 contracts), beginning of market contraction in UK market

Reverse mortgages – diffusion in lead market and selected lag market

Reverse mortgages signed in 2007
Contracts signed per 1 million inhabitants

<table>
<thead>
<tr>
<th>Country</th>
<th>Contracts per 1 million inhabitants</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>467</td>
</tr>
<tr>
<td>USA</td>
<td>357</td>
</tr>
<tr>
<td>Sweden</td>
<td>277</td>
</tr>
<tr>
<td>Spain</td>
<td>89</td>
</tr>
<tr>
<td>France</td>
<td>3.1</td>
</tr>
<tr>
<td>Germany</td>
<td>1.2</td>
</tr>
</tbody>
</table>

SOURCE: Levesen based on Fornero et al. 2011, NRMLA 2012, Maddison 2010
Designing products for everyone or specifically for old people?

<table>
<thead>
<tr>
<th>Universal design</th>
<th>VS.</th>
<th>Age-based innovations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed to maximize usability by diverse users – irrespective of age</td>
<td>VS.</td>
<td>Designed primarily for use of aged users</td>
</tr>
<tr>
<td>Kitchen grips</td>
<td>VS.</td>
<td>Stair lift</td>
</tr>
<tr>
<td>Ring plug</td>
<td>VS.</td>
<td>Rollator</td>
</tr>
<tr>
<td>Higher market potential</td>
<td>VS.</td>
<td>Incorporating age-specific needs and preferences</td>
</tr>
<tr>
<td>Potentially costly over-engineering of design features</td>
<td>VS.</td>
<td>May be necessary where universal design is not available</td>
</tr>
<tr>
<td>May not always be possible or economically advantageous</td>
<td>VS.</td>
<td></td>
</tr>
</tbody>
</table>

• Higher market potential
• Potentially costly over-engineering of design features
• May not always be possible or economically advantageous